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Abstract

Despite implementation of enhanced management practices, chronic wasting disease in US white-tailed deer (Odocoileus virginianus) con-
tinues to expand geographically. Herein, we perform the largest genome-wide association analysis to date for chronic wasting disease
(n¼412 chronic wasting disease-positive; n¼758 chronic wasting disease-nondetect) using a custom Affymetrix Axiom single-nucleotide
polymorphism array (n¼121,010 single-nucleotide polymorphisms), and confirm that differential susceptibility to chronic wasting disease
is a highly heritable (h2 ¼ 0:611 6 0:056) polygenic trait in farmed US white-tailed deer, but with greater trait complexity than previously
appreciated. We also confirm PRNP codon 96 (G96S) as having the largest-effects on risk (P� 3.19E-08; phenotypic variance explained �
0.025) across 3 US regions (Northeast, Midwest, South). However, 20 chronic wasting disease-positive white-tailed deer possessing
codon 96SS genotypes were also observed, including one that was lymph node and obex positive. Beyond PRNP, we also detected 23 sig-
nificant single-nucleotide polymorphisms (P-value � 5E-05) implicating �24 positional candidate genes; many of which have been directly
implicated in Parkinson’s, Alzheimer’s and prion diseases. Genotype-by-environment interaction genome-wide association analysis
revealed a single-nucleotide polymorphism in the lysosomal enzyme gene ARSB as having the most significant regional heterogeneity of
effects on chronic wasting disease (P� 3.20E-06); with increasing copy number of the minor allele increasing susceptibility to chronic wast-
ing disease in the Northeast and Midwest; but with opposite effects in the South. In addition to ARSB, 38 significant genotype-by-
environment single-nucleotide polymorphisms (P-value � 5E-05) were also detected, thereby implicating � 36 positional candidate genes;
the majority of which have also been associated with aspects of Parkinson’s, Alzheimer’s, and prion diseases.
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Introduction
Chronic wasting disease (CWD) was initially recognized as a fatal
wasting syndrome in captive mule deer (Odocoileus hemionus) and
black-tailed deer (Odocoileus hemionus columbianus) housed within
several Colorado wildlife research facilities during the late 1960s,
with subsequent histological characterization as a prion disease
by the late 1970s (Williams and Young 1980; Moreno and Telling
2018). Following initial characterization, CWD has subsequently
been detected in free-ranging US elk (Cervus elaphus nelsoni), mule
deer, white-tailed deer (Odocoileus virginianus; hereafter WTD),
and moose (Alces alces shirasi), with further geographic expansion
of the disease noted among farmed and free-ranging populations
of these species (Moreno and Telling 2018; Gavin et al. 2019;
Osterholm et al. 2019). Relevant to the geographic expansion of
CWD, development and implementation of modern management
practices, including the establishment of surveillance or contain-
ment zones, as well as depopulation of positive herds, have not
prevented CWD from emerging in new geographic areas; with
multiple Canadian provinces and at least 26 US states currently
affected by CWD (Moreno and Telling 2018; Gavin et al. 2019;
Osterholm et al. 2019). Moreover, Norway, Finland, and the

Republic of Korea have also reported CWD in free-ranging rein-
deer (Rangifer tarandus; Norway), moose (Alces alces; Norway,
Finland), and imported elk (Korea) (Moreno and Telling 2018;
Gavin et al. 2019; Osterholm et al. 2019); thereby emphasizing the
global expansion of CWD among several susceptible species
within the family Cervidae. However, recent studies hypothesize
that some forms of transmissible CWD may have emerged from
sporadic CWD in Norwegian reindeer, moose, and perhaps red
deer (Cervus elaphus) (Mysterud et al. 2020; Güere et al. 2021).

A recent genome-wide association study demonstrated that
differential susceptibility to CWD, and natural variation in dis-
ease progression, are both moderately to highly heritable poly-
genic traits among farmed US WTD, and that loci other than
PRNP are involved (Seabury et al. 2020). Moreover, genomic predic-
tion accuracy related to differential susceptibility to CWD, as esti-
mated by cross validation, was also shown to be high; thereby
underscoring the potential for reducing susceptibility in farmed
US WTD via genomic prediction (Seabury et al. 2020). However,
no information currently exists regarding the potential for
genotype-by-environment (GxE) interactions with respect to dif-
ferential susceptibility to CWD. Herein, we employ genome-wide
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association analyses (GWAA) to further investigate the genomic
basis for differential susceptibility to CWD in farmed US WTD
using a larger and more geographically diverse sample than
previously reported (Seabury et al. 2020), and subsequently
confirm the high heritability of differential susceptibility to CWD.
Additionally, we use two GWAA approaches to evaluate the po-
tential for significant GxE interactions with respect to differential
susceptibility to CWD among farmed US WTD. The results of this
study provide the first genome-wide report on GxE interactions
related to CWD, and are expected to positively augment genomic
prediction programs aimed at reducing susceptibility among
farmed US WTD.

Materials and methods
Study overview
In the present study, we utilize mixed linear models with
genomic relationship matrices (GRM) to further investigate the
genomic basis of differential susceptibility to CWD in farmed US
WTD; including the potential for significant GxE interactions.
Initially, we conduct standard GWAA with GRM heritability
estimated using EMMAX (Kang et al. 2010; Segura et al. 2012), but
also produce heritability estimates on the liability scale using
GCTA (Lee et al. 2011; Yang et al. 2011) for 1,170 farmed US WTD.
Thereafter, we use an implementation of EMMAX (Kang et al.
2010; Vilhjalmsson 2012; Smith et al. 2019) where interaction-
term covariates may be specified; with the environmental
variable expressing the US region of origin for each individual
WTD (i.e. Northeast, Midwest, South) specified as the interaction
term for a GxE GWAA. Finally, we also perform region-specific
(i.e. Northeast, Midwest, South) GWAA for differential suscepti-
bility to CWD using EMMAX (Kang et al. 2010; Segura et al. 2012),
and thereafter, utilize a meta-based approach employing
Cochran’s Q-test for heterogeneity (Cochran 1954; Willer et al.
2010) to further confirm WTD single-nucleotide polymorphisms
(SNPs) displaying evidence for significant GxE interactions with
respect to CWD.

Animal resources, CWD diagnostics, and DNA
isolation
Herein, we utilized animal repository resources, including CWD
immunohistochemistry (IHC) diagnostic data (n¼ 523 CWD non-
detect, n¼ 284 CWD positive), PRNP genotypes, and Affymetrix
Axiom SNP array genotypes for 807 farmed US WTD from a previ-
ous study (Seabury et al. 2020). These data included regional rep-
resentation from the US Northeast (n¼ 35), Midwest (n¼ 291),
and South (n¼ 481), as previously described (Seabury et al. 2020).
In the present study, we expand upon our prior dataset (n¼ 807)
to collectively include 1,170 farmed US WTD from the Northeast
(n¼ 286), the Midwest (n¼ 322), and the South (n¼ 562) by obtain-
ing 363 additional farmed US WTD samples (both sexes) from an
existing USDA APHIS repository that was created via federal
CWD surveillance activities; including depopulations of CWD
positive herds (USDA APHIS, Fort Collins, CO). Thus, the current
dataset includes both CWD positive (n¼ 412) and CWD nondetect
(n¼ 758) WTD (Thomsen et al. 2012) from 22 US farms with CWD
prevalence ranging from 0.01 to 1.00 (Supplementary Table 1).
For new WTD enrolled in the present study (n¼ 363), all CWD di-
agnostic classifications were based upon IHC (i.e. IHC of lymph
node, obex, rectal, tonsil biopsy) that was performed at the USDA
National Veterinary Services Laboratory (NVSL) in Ames Iowa
(Thomsen et al. 2012). Genomic DNA for 363 additional farmed US
WTD was isolated from ear fibroblast biopsies using the LGC

sbeadex tissue purification kit (LGC) with automation at
GeneSeek Neogen (Lincoln, NE) (Seabury et al. 2020). Thereafter,
WTD genomic DNAs were quantified and assessed for purity
(260/280 ratio) using a Nanodrop (ThermoFisher).

PRNP and Affymetrix Axiom array genotyping
All PRNP genotyping (n¼ 363 farmed US WTD) for missense var-
iants at codons 37, 95, 96, 116, and 226 was performed at
GeneSeek Neogen (Lincoln, NE) via commercial genotyping by se-
quencing service (Seabury et al. 2020). Briefly, to prevent chimeric
PRNP amplicons that obscure genotype–phenotype relationships,
the functional PRNP gene was PCR amplified using primers exclu-
sionary to a processed pseudogene (O’Rourke et al. 2004), with all
amplicons purified via AMPure XP beads as recommended by the
manufacturer (Beckman Coulter); thereby facilitating the genera-
tion of barcoded Illumina Nextera XT DNA libraries and amplicon
sequencing on an Illumina MiSeq. All WTD PRNP genotypes for
codons 37, 95, 96, 116, and 226 were called from the reference-
aligned read pileups at GeneSeek Neogen, and delivered in text
format (Seabury et al. 2020). Genotyping on the custom
Affymetrix Axiom 200K SNP array for 363 farmed US WTD was
also performed at GeneSeek Neogen using the Affymetrix best
practices workflow; with genotypes delivered in text format
(Seabury et al. 2020). Specifically, Affymetrix quality control
thresholds implemented for the present study were DQC � 0.82,
QC call rate �95%, passing samples in the project �95%, and av-
erage call rate for passing samples �97%, as previously described
and utilized (Seabury et al. 2020). For the present study, a total of
1,170 WTD samples passed all Affymetrix QC filters; each with
125,585 SNP array genotypes, and paired PRNP codon genotypes,
thus yielding a combined set of 125,590 SNP genotypes for analy-
sis. However, only 1,151 WTD samples contained all possible
metadata (i.e. sex, age, US region of origin, farm code, CWD diag-
nostic outcome), and could be used for all analytical approaches
explored in the present study.

GWAA and GxE interactions
Because the draft de novo WTD genome assembly
(GCF_002102435.1 Ovir.te_1.0) is unanchored (i.e. by maps or in
situ hybridization), utilization of a comparative marker map
(ARS-UCD1.2; GCA_002263795.2) is necessary to provide compar-
ative evidence for the origin of the array and PRNP SNPs (i.e. auto-
somal vs. nonautosomal), as previously described (Seabury et al.
2020). After joining the comparative marker map to the combined
set of all WTD genotypes (PRNP þ Affymetrix Axiom array), qual-
ity control analyses were performed in SVS v8.9.0 (Golden Helix),
including verification of sample call-rate (� 95%), and pairwise
IBS distances to identify twins and duplicate samples among
1,170 US farmed WTD. No duplicate samples were detected.
Further quality control analyses and filtering were as follows:
SNP filtering by call rate (>15% missing excluded), MAF (< 0.01
excluded), polymorphism (monomorphic SNPs excluded), and
Hardy–Weinberg Equilibrium (excludes SNPs with HWE P-value <
1e-25), thereby yielding 121,010 SNPs for all EMMAX GWAA in-
volving 1,170 US farmed WTD. PRNP SNPs which failed to endure
quality control filtering included only codon 116 (monomorphic),
whereas codons 37, 95, 96, and 226 remained. To further investi-
gate the genomic basis for differential susceptibility to CWD in
farmed US WTD using a larger and more geographically diverse
sample than previously reported, we performed GWAA on 1,170
WTD using a mixed linear model with variance component esti-
mates, as implemented in EMMAX, and executed in SVS v8.9.0,
with all genotypes recoded as 0, 1, or 2, based on the incidence of
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the minor allele (Kang et al. 2010; Segura et al. 2012; Neibergs et al.
2014; Seabury et al. 2017, 2020; Smith et al. 2019). However, within
an additive model, hemizygous males may only possess 0 or 1
copy of an X-linked minor allele (excluding the pseudo-
autosomal region), whereas females may possess 0, 1, or 2 copies
of the minor allele. A gender correction reflecting these ploidy
differences was utilized to recode putative X-linked genotypes
prior to EMMAX-GRM analyses (Neibergs et al. 2014; Taylor 2014;
Seabury et al. 2017, 2020). The disease phenotype used for all
WTD analyses was CWD Binary (0¼nondetect, 1¼CWD positive
for one or more diagnostic tissues including lymph node, obex,
rectal, and/or tonsil). The mixed model utilized in the present
study can be generally specified as: y ¼ Xbþ Zuþ �, where y rep-
resents a n� 1 vector of CWD diagnostic phenotypes, X is a n� f
matrix of fixed effects, b is a f � 1 vector representing the coeffi-
cients of the fixed effects, u is the unknown random effect, and Z
is a n� t matrix relating the random effect to the CWD diagnostic
phenotypes (Kang et al. 2010; Segura et al. 2012; Seabury et al.
2017, 2020; Smith et al. 2019). Herein, we must assume that
Var uð Þ ¼ r2

gK and Var �ð Þ ¼ r2
eI, such that Var yð Þ ¼ r2

gZKZ
0 þ r2

eI, but
in the present WTD study Z represents the identity matrix I, and
K represents a relationship matrix of all WTD samples. To solve
the mixed model equation using a generalized least squares ap-
proach, the variance components (i.e. r2

g and r2
e) were estimated

using the REML-based (restricted maximum likelihood) EMMA
approach (Kang et al. 2010), with stratification accounted for and
controlled using a GRM ðG) (VanRaden 2008), as computed from
the filtered WTD genotypes (PRNP þ Affymetrix Axiom array)
(Seabury et al. 2020). GRM heritability estimates (½h2 ¼
r2

g=ðr2
g þ r2

eÞ�) for differential susceptibility to CWD were pro-
duced as previously described (Kang et al. 2010; Segura et al. 2012;
Seabury et al. 2017, 2020; Smith et al. 2019). Likewise, because the
proportion of CWD cases included herein (i.e. 35% of 1,170
farmed WTD) is larger than the weighted mean CWD prevalence
(i.e. 26%) across all farms included in the present study, we also
estimated the heritability on a liability scale (Lee et al. 2011) using
GCTA v1.93 (Yang et al. 2011) across a range of values for preva-
lence (i.e. prevalence¼ 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.26 as the
weighted mean in the present study, 0.30, and 0.35). To conduct a
GxE GWAA, we used the same filtered WTD data and disease
phenotype (CWD Binary) in conjunction with an implementation
of EMMAX (Kang et al. 2010; Vilhjalmsson 2012; Smith et al. 2019)
whereby interaction-term covariates may be specified; with the
environmental variable expressing the US geographic region of
origin for each WTD (Northeast, Midwest, South) specified as the
interaction term. The basis of this approach is rooted in full vs.
reduced model regression (Neibergs et al. 2014; Smith et al. 2019),
where interaction-term covariates are included in the model as
follows: Each specified interaction-term covariate serves as one
reduced-model covariate; Each specified interaction-term covari-
ate is also multiplied, element by element, with each SNP predic-
tor (i.e. SNP � geographic origin) to create an interaction term to be
included in the full model. Specifically, given n observations of a
WTD disease phenotype (CWD Binary) that is influenced by
m fixed effects and n instances of one random effect, with one
or more GxE effects (e) whereby the interaction is potentially
with one predictor variable, we model this using a full and a
reduced model. The full model can be specified as
y ¼ Xcbkc þ Xibki þ Xkbkp þ Xipbip þ ufull þ �full, and the reduced
model as y ¼ Xcbkrc þ Xibkri þ Xkbrkp þ ureduced þ �reduced, where y
is an n-vector of observed WTD CWD phenotypes, Xc is an n �m
matrix of m fixed-effect covariates, Xi is an n � e matrix of e fixed
terms being tested for GxE interactions, Xk is an n-vector

containing the covariate or predictor variable that may be inter-
acting, and Xip is an n � e matrix containing the e interaction
terms created by multiplying the columns of Xi element-by-
element with Xk. Herein, all b terms correspond to the X terms as
written above, and to the full or the reduced model, as specified,
with u and � representing the random effect and error terms, re-
spectively (Smith et al. 2019). Similar to the EMMAX method with-
out interactions (Kang et al. 2010; Segura et al. 2012), we
approximate this by finding the variance components once, uti-
lizing the parts of the above equations that are independent of Xk

as follows: y ¼ Xcbcvc þ Xibivc þ uvc þ �vc, where vc indicates the
variance components. To estimate the variance components, we
must again assume that Var uvcð Þ ¼ r2

gK and Var �vcð Þ ¼ r2
eI,

whereby Var yð Þ ¼ r2
gKþ r2

eI (Kang et al. 2010; Vilhjalmsson 2012;
Smith et al. 2019). The REML-based EMMA technique can then be
used to estimate the variance components r2

g and r2
e as well as a

matrix B (and its inverse) whereby BB
0 ¼ H ¼ Var yð Þ

r2
g
¼ K þ r2

e
r2

g
I, as

previously described and utilized in a large-sample analysis
(Smith et al. 2019). Thereafter, for every WTD SNP marker (kÞ,
we can compute (via EMMAX-type approximation) the full and
reduced models as: B�1y ¼ B�1Xcbkc þ B�1Xibki þ B�1Xkbkpþ
B�1Xipbip þ B�1 ufull þ �fullð Þ for the full model, where
B�1 ufull þ �fullð Þ is assumed to be an error term proportional to
the identity matrix, and as B�1Xcbkrc þ B�1Xibkri þ B�1Xkbrkp þ
B�1 ureduced þ �reducedð Þ for the reduced model,
where B�1 ureduced þ �reducedð Þ is assumed to be an error term pro-
portional to the identity matrix (Smith et al. 2019). To estimate
the significance of the full vs. reduced model using the EMMAX
GxE approach, an F-test was performed (Kang et al. 2010;
Vilhjalmsson 2012; Smith et al. 2019); with all analyses executed
and evaluated by constructing Manhattan plots within SVS v8.9.0
(Golden Helix, Bozeman, MT). Finally, although SVS computes
the full model described above and outputs all b values, it only
performs an optimization of the reduced model computation; to
determine the residual sum of squares of the reduced-model
equation, and thus estimate the full vs. reduced model P-value
via F-test (Kang et al. 2010; Vilhjalmsson 2012). This general ap-
proach is highly efficient for large-sample analyses (Smith et al.
2019); with the reduced model optimization used to solve:
MB�1y ¼ MB�1Xkbrkp þ �MB, where M ¼ I� QQ

0� �
, and Q is derived

from performing the QR algorithm, as QR ¼ B�1[XcjXi]. Additional
formulae and documentation are available at https://doc.golden
helix.com/SVS/latest/svsmanual/mixedModelMethods/overview.
html#gblupproblemstmt. Notably, because the probability of
CWD infection is likely to increase with age (Grear et al. 2006),
and may also disparately affect male and female WTD in differ-
ent US regions, including differences in clinical disease progres-
sion and mortality (Grear et al. 2006; Edmunds et al. 2016), we
explored several model fits for comparison as follows: GWAA
with no fixed effect covariates; GWAA with sex, age, and US re-
gion of origin as fixed effect covariates; GWAA with sex, age, and
US farm of origin (i.e. for farms with �10 deer available for analy-
sis) as fixed effect covariates; GxE GWAA with no fixed effect
covariates; GxE GWAA with sex and age as fixed effect covariates.
A farm variable was not used as a fixed effect covariate for
EMMAX GxE GWAA because farm and US region of origin are co-
linear. For all EMMAX analyses, genomic inflation factors were
estimated in SVS v8.9.0 (Golden Helix) as: Pseudo-Lambda¼log10
(median observed P-value)/log10(median expected P-value).

For comparison to the EMMAX GxE approach (Kang et al. 2010;
Vilhjalmsson 2012; Smith et al. 2019) utilizing 1,170 WTD, we also
perform individual region-specific (i.e. Northeast, Midwest,
South) GWAA for differential susceptibility to CWD using
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EMMAX (Kang et al. 2010; Segura et al. 2012), and thereafter, uti-
lize a meta-based approach employing Cochran’s Q-test for het-
erogeneity of SNP effects (Cochran 1954; Willer et al. 2010).
Briefly, SNP filtering for WTD from each US region (i.e. Northeast,
Midwest, South), with additive recoding and gender correction,
was performed as described above; thereby resulting in the fol-
lowing data sets for regional EMMAX GWAA: Northeast 124,977
SNPs (n¼ 116 CWD positive, n¼ 170 CWD nondetect); Midwest
125,446 SNPs (n¼ 208 CWD positive, n¼ 114 CWD nondetect);
South 125,120 SNPs (n¼ 88 CWD positive, n¼ 474 CWD nonde-
tect). Regional EMMAX GWAA were performed as described above
within SVS 8.9.0 (Golden Helix) as follows: GWAA with no fixed
effect covariates; GWAA with sex and age as fixed effect covari-
ates; GWAA with sex, age, and US farm of origin as fixed effect
covariates. The results of the regional EMMAX GWAA’s were uti-
lized to conduct a sample-size (Z-score based) meta-analysis, as
specified in the program METAL (Willer et al. 2010), and imple-
mented in SVS 8.9.0 (Golden Helix). For every regional EMMAX
GWAA, the SVS implementation of METAL (Willer et al. 2010) uti-
lizes SNP marker P-values, the effect direction (SNP Predictor
Beta), and sample sizes (for weighting purposes) to compute a Z-
score and overall P-value, but also implements Cochran’s Q-test
with P-values for identifying heterogeneity of SNP effects
(Cochran 1954; Willer et al. 2010). Briefly, suppose that Ni is the
WTD sample size from study i, while pij is the P-value from study
i for SNP j, and Dij is the direction of effect for study i at SNP j; the
SVS v8.9.0 implementation of METAL (Willer et al. 2010) uses a
normally distributed intermediate statistic zij, defined as
zij ¼ U�1ðpij=2ÞsignðDijÞ, to describe the effect, where U�1 denotes
the inverse of 1 minus the cumulative distribution function of
the normal distribution (the inverse survival function).
Thereafter, using wZi ¼

ffiffiffiffiffi
Ni
p

to represent the Z-score weight for

WTD study i, the overall Z-score for SNP j is computed as

Zj ¼
P

i
zijwZiffiffiffiffiffiffiffiffiffiffiffiffiP

i
w2

Zi

p , and the overall P-value is estimated as Pj ¼ 2U Zj
�� ��� �

;

where U represents 1 minus the probability density function of
the normal distribution (the survival function). Manhattan plots
for the METAL-based meta-analysis (�log10 Overall P-value;
�log10 Cochran’s Q P-value) were constructed and visualized in
SVS v8.9.0 (Golden Helix). For all analyses (i.e. EMMAX, METAL),
we employed a nominal significance threshold (P-value �5E-05)
for polygenic traits (Wellcome Trust Case Control Consortium
2007; Neibergs et al. 2014; Seabury et al. 2017, 2020).

Results and discussion
A GWAA was conducted using a mixed linear model with GRM
and variance component analysis, thereby producing a marker-
based heritability estimate (GRM heritability) for differential sus-
ceptibility to CWD, as implemented in EMMAX (Kang et al. 2010;
Segura et al. 2012), for a cohort of 1,170 farmed US WTD diagnos-
tically classified (see Materials and Methods) as CWD positive
(n¼ 412) and CWD nondetect (n¼ 758) from three US geographic
regions (Northeast, Midwest, South). Notably, despite a 45% in-
crease in overall sample size from our previous report (Seabury
et al. 2020), including a more balanced sampling from each US
geographic region (see Materials and Methods), the GRM heritability
estimate remains comparatively high in this study (i.e.
h2 ¼ 0:611 6 0:056; previously: h2 ¼ 0:637 6 0:070); with the co-
don 96 missense variant (G96S) again displaying the largest
genome-wide effects on differential susceptibility to CWD (Fig. 1,
Supplementary Table 2). Likewise, heritability estimates on the

liability scale (Lee et al. 2011; Yang et al. 2011) were also similarly
high when CWD prevalence was � 0.05 (i.e. h2 from
Sum of VðGÞ L=Vp ¼ 0:557 6 0:053Þ, and these estimates only in-
creased with increasing CWD prevalence, thereby suggesting that
our current and previous report (Seabury et al. 2020) likely provide
conservative heritability estimates; particularly since the
weighted mean CWD prevalence across all farms included in the
present study was 0.26 (Supplementary Table 2). However, it is
also interesting to note that given a much larger and more re-
gionally diverse sample in this study, the proportion of pheno-
typic variance explained (PVE) by PRNP codon 96 is markedly
lower (PVE � 0.026) than previously reported (PVE � 0.052) for 807
farmed US WTD (Seabury et al. 2020). Moreover, in the present
study, we noted 20 CWD-positive WTD that possessed the codon
96SS genotype, including one that was both lymph node and
obex positive. Collectively, for an EMMAX GWAA with 1,170
farmed US WTD, only eight SNPs met a nominal significance
threshold (P-value � 5E-05) for polygenic traits (Fig. 1,
Supplementary Table 2) (Wellcome Trust Case Control
Consortium 2007; Neibergs et al. 2014; Seabury et al. 2017, 2020),
thereby confirming the CWD trait architecture previously de-
scribed, where very few large or moderate-effect regions exist;
but together with many small-effect regions, a significant propor-
tion of the phenotypic variance can be explained (Seabury et al.
2020). Nevertheless, it should also be noted that EMMAX is
known to produce conservative P-values (Zhou and Stephens
2012). In addition to PRNP, an investigation of nominally signifi-
cant SNPs (P-value � 5E-05) revealed positional candidate genes
previously implicated in aspects of prion disease (TPH2; PDE4DIP),
including scrapie (ACSL4), regulation of the central nervous sys-
tem (ADGRB3), neuroprotection (EN1), Alzheimer’s (ASCL1,
AMOTL2, RYK), and Parkinson’s disease (EN1, ASCL1, RTL9) (Ide
et al. 2005; Roff�e et al. 2010; Filali et al. 2014; Nishizawa et al. 2014;
Alleaume-Butaux et al. 2015; Rekaik et al. 2015; Dunn et al. 2019;
Meyer et al. 2019; Scuderi et al. 2019; Feng et al. 2020; Gallart-
Palau et al. 2020; Le Guen et al. 2020). Additional missense var-
iants encoded by PRNP codons 37, 95, and 226 did not meet the
nominal significance level (P-value � 5E-05) for polygenic traits
(Wellcome Trust Case Control Consortium 2007; Neibergs et al.
2014; Seabury et al. 2017, 2020). Importantly, EMMAX mixed
model solutions for the binary CWD case-control trait were ro-
bust to the inclusion of additional fixed effect covariates (i.e. sex,
age, US. region of origin; and/or sex, age, farm); as the majority of
the significant SNPs (P-value � 5E-05) detected were shared across
all analyses, including PRNP codon 96, which consistently dis-
played the largest genome-wide effects on differential susceptibil-
ity to CWD (Fig. 1, Supplementary Table 2 and Supplementary
Fig. 1). Detailed summary data for all EMMAX GWAA’s, including
PVE, the direction of all SNP effects, Supplementary Manhattan
plots, genomic inflation factors (Pseudo-Lambda), and PP-Plots are
provided in Additional Files 1–7 in DRYAD (https://doi.org/10.5061/
dryad.wh70rxwnt).

To investigate the potential for significant GxE interactions
with respect to differential susceptibility to CWD, we con-
ducted a GxE GWAA using EMMAX (see Materials and Methods).
Collectively, 27 SNPs met the nominal significance level
(P-value � 5E-05) for polygenic traits (Wellcome Trust Case
Control Consortium 2007; Neibergs et al. 2014; Seabury et al.
2017, 2020), with no significant SNPs noted within or proximal
to PRNP (Fig 1., Supplementary Table 2). Notably, the largest-
effect GxE signal detected for differential susceptibility to CWD
was in ARSB (intron 4); a gene that encodes a lysosomal
enzyme (Arylsulfatase B) required for the catabolism of
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glycosaminoglycans (GAGs), including N-acetyl-D-galactos-

amine, dermatan sulfate, and chondroitin sulfate. Mutations

in ARSB that result in a defective protein (i.e. enzyme defi-

ciency) are known to be causal for the lysosomal storage dis-

ease known as Mucopolysaccharidosis (MPS) Type VI; with the

concentration of urinary GAGs generally presenting as 5-100

times higher in patients with various forms of MPS (Pastores

and Maegawa 2013; Sun et al. 2015; Vairo et al. 2015; Malekpour

et al. 2018; Wang et al. 2018). Interestingly, the metabolism of

GAGs is also known to be impaired in both humans and ani-

mals suffering from prion disease; with the degradation of

GAGs disrupted by their interaction with PrPSc, thus resulting

in their accumulation and secretion in urine (Mayer-

Sonnenfeld et al. 2005). Moreover, hexosaminidase is known to

be one of the last enzymes functioning in the degradation cas-

cade for several GAGs (i.e. chondroitin sulfate, dermatan sul-

fate, and keratan sulfate), and its enzymatic activity is

significantly elevated in the brains of scrapie-infected mice, as

compared to controls (Mayer-Sonnenfeld et al. 2005). However,

the relationship between GAGs and prion diseases in humans

and animals is somewhat complex, as the presence of GAGs

(i.e. heparan sulfate; chondroitin sulfate) enhances PrPSc bio-

genesis and accumulation in cells, but the opposite has also

been well postulated; where the accumulation of PrPSc may

somehow cause an increase in GAG accumulation, particularly

in lysosomes (Ben-Zaken et al. 2003; Mayer-Sonnenfeld et al.

2005). To the authors’ best knowledge, this is the first report to

ever demonstrate a direct genetic association between a lyso-

somal enzyme gene involved in GAG catabolism (i.e. dermatan

sulfate; chondroitin sulfate), and prion disease (CWD); yet the

presence of weakly and strongly sulfated GAGs (i.e. chondroi-

tin, heparan, karatan, and/or heparin) have been known to

colocalize with amyloid plaques in CWD-affected captive mule

deer for more than 30 years (Guiroy et al. 1991). However, amy-

loid plaques were not uniformly found in all CWD positive

mule deer (Guiroy et al. 1991). Notably, a more recent study in

mice demonstrates that MPS can lead to amyloidosis, synu-

cleinopathy, and an apparent prion encephalopathy; with the

accumulation of misfolded proteins generally considered to be

an indirect result of progressive failure of lysosomal function

Fig. 1. EMMAX binary case-control (0, 1) GWAA for CWD in farmed US white-tailed deer (Odocoileus virginianus; hereafter WTD). All dual-panel
Manhattan plots depict �log10 P-values and the proportion of phenotypic variance explained (PVE) by white-tailed deer marker-effects on the y-axis,
and the comparative position of all SNPs on the x-axis, as inferred by blastn alignment with the bovine genome (ARS-UCD1.2) (Seabury et al. 2020). All
analyses include diagnostically confirmed CWD positive (n¼ 412) and CWD nondetect (n¼ 758) WTD. a) EMMAX GWAA for CWD with no fixed-effect
covariates, high GRM heritability estimates (h2 ¼ 0:611 6 0:056) (Kang et al. 2010; Segura et al. 2012; Seabury et al. 2020), and relevant positional
candidate genes. Genomic inflation factor (Pseudo-Lambda) ¼ 1.007. b) EMMAX GxE GWAA for CWD with US WTD region of origin (Northeast, Midwest,
South) as the environmental interaction term, and relevant positional candidate genes. Genomic inflation factor (Pseudo-Lambda) ¼ 1.140.
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in inbred mice (Naughton et al. 2013). Therefore, this raises the
possibility that CWD may potentially present diagnostically in
the absence of an infectious exposure (i.e. sporadically), and
that future research should focus on the pathophysiological
timing and potentially complex biochemical mechanisms of
disease, as well as variation in PrPCWD trafficking, including
quantification of live-animal shedding given different genomic
backgrounds (Seabury et al. 2020). Interestingly, in the present
study, the ARSB SNP displaying significant GxE effects was ob-
served to increase susceptibility to CWD in both the Northeast
and the Midwest, but had the opposite direction of effect in the
South; thereby underscoring the overall trait complexity.
Beyond ARSB and its association with MPS, we also noted 24 po-
sitional candidate genes related to 26 additional EMMAX GxE
signals (P-value � 5E-05; Supplementary Table 2, Fig. 1); the
majority of which have previously been associated with
Parkinson’s disease (SMYD4, WARS2, IFNGR1, PLPP4, ASCL1,
FAM120A), Alzheimer’s disease (TBX15, IFNGR, PTP4A1, AIM2,
SLC10A2, COL25A1, ASCL1, EPHB1, UMAD1, VNN3, COL27A1,
RNF144B, SDK2), and various prion diseases (IFNGR, SEC23IP,
EPHA3, EFNB2, ELOVL4, DOCK5, COL27A1) including scrapie, bo-
vine spongiform encephalopathy, and Creutzfeldt–Jakob dis-
ease (Ide et al. 2005; Julius 2008; Hashioka et al. 2009; Tong et al.
2010; Tian et al. 2013; Woodling et al. 2014; Majer 2015; Freeman
and Ting 2016; V�elez et al. 2016; Watson et al. 2016; Mez et al.
2017; Su et al. 2018; Choubey 2019; Dabin 2019; Hirsch et al.
2019; Liu et al. 2019; Majer et al. 2019; Meyer et al. 2019; Thatra
2019; Bellenguez et al. 2020; Dabin et al. 2020; Donaldson et al.
2020; Martinelli et al. 2020; Wang et al. 2020; Vastrad and
Vastrad 2021). Notably, the EMMAX GxE mixed model solutions
were also robust to the inclusion of additional fixed effect
covariates (i.e. sex, age; Supplementary Table 2 and
Supplementary Fig. 2); as the majority of the significant SNPs
(P-value � 5E-05) detected were shared across all analyses, in-
cluding ARSB, which consistently displayed the most signifi-
cant genome-wide GxE interactions related to CWD
susceptibility. Detailed summary data for all EMMAX GxE
GWAA’s, including SNP-based regional interactions and

directions of effect, a Supplementary Manhattan plot
(Supplementary Fig. 2), genomic inflation factors (Pseudo-
Lambda), and PP-Plots are provided in Additional Files 8–12 in
DRYAD (https://doi.org/10.5061/dryad.wh70rxwnt).

For comparison to our EMMAX GxE analysis with WTD region
of origin as the interaction term, we performed individual
EMMAX GWAA’s for each US region (Northeast, Midwest, South),
and used the corresponding regional results (Additional Files 13–
15 in DRYAD; (https://doi.org/10.5061/dryad.wh70rxwnt) to con-
duct a meta-analysis, as previously described and implemented
in the program METAL (Willer et al. 2010). Collectively, the major-
ity of the significant EMMAX main effect SNPs were also detected
by METAL (P-value � 5E-05); with the codon 96 missense variant
(G96S) displaying the most significant genome-wide effects on
differential susceptibility to CWD across all US regions (Fig. 2,
Supplementary Table 2). However, the METAL-based approach
also identified a significant main-effect SNP in ARSB (intron 6)
which was not significant by EMMAX GWAA (Fig. 1,
Supplementary Table 2), but nonetheless, was among the top 13
ranked SNPs (Additional Files 1–4 in DRYAD: (https://doi.org/10.
5061/dryad.wh70rxwnt). Five additional main-effect SNPs not
detected by EMMAX were also detected by METAL; with posi-
tional candidate genes previously associated with Parkinson’s
disease (CDYL, NT5C2), Alzheimer’s disease (CDYL), pathological
inclusions of neuronal intermediate filaments (INA), and scrapie
(NT5C2, TSR2) (Cairns et al. 2004; Filali et al. 2014; Nalls et al. 2014;
Majer 2015; Lo et al. 2020; Aslam et al. 2021). Relevant to our
EMMAX GxE analysis, SNPs displaying evidence of significant het-
erogeneity of effects, as evidenced by Cochran’s Q-test, included
ARSB (intron 4) as the most significant GxE interaction with re-
spect to differential susceptibility to CWD (Fig. 2, Supplementary
Table 2). In addition to ARSB, METAL-based analysis also identi-
fied eight additional SNPs with significant heterogeneity of
effects across US regions; seven of which were also detected by
EMMAX GxE GWAA (Fig. 2, Supplementary Table 2). One signifi-
cant SNP that was detected in our METAL-based analysis via
Cochran’s Q-test for heterogeneity was intergenic between PLS3
and DACH2; with DACH2 previously implicated in the

Fig. 2. Binary case-control (0, 1) meta-analysis for differential susceptibility to CWD in farmed US white-tailed deer (Odocoileus virginianus; hereafter
WTD) from the Northeast, Midwest, and South. Individual EMMAX GWAA’s (Kang et al. 2010; Segura et al. 2012; Seabury et al. 2020) for each US region
were used in conjunction with the METAL-based approach to conduct a meta-analysis (Willer et al. 2010). METAL-based analyses included diagnostically
confirmed CWD positive (n¼ 412) and CWD nondetect (n¼ 758) WTD. a) METAL-based Z-score analysis of shared WTD SNP effects and positional
candidate genes influencing differential susceptibility to CWD across 3 US regions (Northeast, Midwest, South). Genomic inflation factor (Pseudo-
Lambda) ¼ 1.015. b) METAL-based Cochran’s Q-test for heterogeneity of SNP effects (Cochran 1954; Willer et al. 2010) across 3 US regions (Northeast,
Midwest, South) and relevant positional candidate genes. Genomic inflation factor (Pseudo-Lambda) ¼ 0.997.
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pathophysiology of scrapie (Gossner and Hopkins 2015).
However, it should also be noted that the same SNP implicating
DACH2 was also among the top 39 ranked SNPs in a EMMAX
GWAA (Fig. 1, Additional File 1), and the most significant SNP in a
regional EMMAX GWAA for farmed WTD in the US South
(Additional File 15; DRYAD: https://doi.org/10.5061/dry-
ad.wh70rxwnt). Altogether, these results are intriguing consider-
ing that the molecular phenotype of experimentally passaged
CWD in sheep is known to be indistinguishable from some strains
of scrapie in sheep (Cassmann et al. 2021). Application of the
METAL-based meta-analysis approach to regional EMMAX
GWAA’s with and without additional fixed effect covariates (i.e.
sex and age; sex, age, and farm) demonstrated that the majority
of the significant main effect SNPs, and those displaying signifi-
cant heterogeneity of effects across three US regions, were shared
across all analyses. Thus, the mixed model solutions for various
US regional model fits consistently implicate an overlapping set
of the same significant SNPs and corresponding positional candi-
date genes. Detailed summary data for all METAL-based meta-
analyses, including the EMMAX mixed model solutions from
all regional model fits, and all corresponding METAL-based meta-
analysis results with PP-Plots are provided in Additional Files 13–
30 in DRYAD (https://doi.org/10.5061/dryad.wh70rxwnt).
Collectively, our analyses of these data are compatible with sev-
eral prior studies; where aspects of prion disease presentation
were largely influenced by a genetic architecture independent of
PRNP (Kingsbury et al. 1983; Stephenson et al. 2000; Iyegbe et al.
2010; Seabury et al. 2020).

Conclusions
Herein, we perform the largest GWAA to date for CWD in WTD,
thereby further confirming that differential susceptibility to CWD
is a highly heritable, polygenic trait in farmed US WTD, but with
greater overall complexity than previously postulated or
reported; as evidenced by significant GxE interactions, the gen-
eral paucity of moderate or large-effect SNPs, and conversely, the
large number of SNPs displaying small effects on risk. We also
confirm PRNP codon 96 as the largest-effect region of the WTD
genome across 3 US regions (Northeast, Midwest, South).
However, the proportion of phenotypic variance explained (PVE)
by PRNP SNPs alone cannot be expected to facilitate a successful
CWD eradication program, as further evidenced by 20 CWD posi-
tive WTD possessing the codon 96SS genotype enrolled in the
present study; including one that was both lymph node and obex
positive. Finally, we provide the first evidence linking naturally
occurring genetic variation in a lysosomal GAG catabolism gene
(ARSB) to differences in CWD susceptibility in farmed US WTD,
but also further confirm the involvement of genes underlying
other neurodegenerative diseases such as Parkinson’s,
Alzheimer’s, and various prion diseases of mammals, including
scrapie and sporadic Creutzfeldt–Jakob disease.
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